Cubic Curves, Finite Geometry and Cryptography
نویسندگان
چکیده
Some geometry on non-singular cubic curves, mainly over finite fields, is surveyed. Such a curve has 9, 3, 1 or 0 points of inflexion, and cubic curves are classified accordingly. The group structure and the possible numbers of rational points are also surveyed. A possible strengthening of the security of elliptic curve cryptography is proposed using a ‘shared secret’ related to the group law. Cubic curves are also used in a new way to construct sets of points having various combinatorial and geometric properties that are of particular interest in finite Desarguesian planes.
منابع مشابه
Elliptic curves with weak coverings over cubic extensions of finite fields with odd characteristic
In this paper, we present a classification of elliptic curves defined over a cubic extension of a finite field with odd characteristic which have coverings over the finite field therefore subjected to the GHS attack. The densities of these weak curves, with hyperelliptic and non-hyperelliptic coverings, are then analyzed respectively. In particular, we show, for elliptic curves defined by Legen...
متن کاملClass number approximation in cubic function fields
A central problem in number theory and algebraic geometry is the determination of the size of the group of rational points on the Jacobian of an algebraic curve over a finite field. This question also has applications to cryptography, since cryptographic systems based on algebraic curves generally require a Jacobian of non-smooth order in order to foil certain types of attacks. There a variety ...
متن کاملPositive Definite Quadratic Forms, Elliptic Curves and Cubic Congruences
Let F (x, y) = ax + bxy + cy be a positive definite binary quadratic form with discriminant Δ whose base points lie on the line x = −1/m for an integer m ≥ 2, let p be a prime number and let Fp be a finite field. Let EF : y = ax + bx + cx be an elliptic curve over Fp and let CF : ax + bx + cx ≡ 0(mod p) be the cubic congruence corresponding to F . In this work we consider some properties of pos...
متن کاملStudy of Finite Field over Elliptic Curve: Arithmetic Means
Public key cryptography systems are based on sound mathematical foundations that are designed to make the problem hard for an intruder to break into the system. Number theory and algebraic geometry, namely the theory of elliptic curves defined over finite fields, has found applications in cryptology. The basic reason for this is that elliptic curves over finite fields provide an inexhaustible s...
متن کاملCubic curves: a short survey
This article discusses cubic curves, some of the ways they arise, and some of their applications in diverse fields such as cryptography and string theory. Key-Words: cubic curve, elliptic curve, Weierstrass equation
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010